
Gene expression

Genetic Neural Networks: an artificial neural

network architecture for capturing gene

expression relationships

Ameen Eetemadi 1,2 and Ilias Tagkopoulos1,2,*

1Department of Computer Science and 2Genome Center, University of California, Davis,

CA 95616, USA

*To whom correspondence should be addressed.

Associate Editor: Bonnie Berger

Received on June 11, 2018; revised on October 27, 2018; editorial decision on November 13, 2018; accepted on November 16, 2018

Abstract

Motivation: Gene expression prediction is one of the grand challenges in computational biology.

The availability of transcriptomics data combined with recent advances in artificial neural networks

provide an unprecedented opportunity to create predictive models of gene expression with far

reaching applications.

Results: We present the Genetic Neural Network (GNN), an artificial neural network for predicting

genome-wide gene expression given gene knockouts and master regulator perturbations. In its

core, the GNN maps existing gene regulatory information in its architecture and it uses cell nodes

that have been specifically designed to capture the dependencies and non-linear dynamics that

exist in gene networks. These two key features make the GNN architecture capable to capture com-

plex relationships without the need of large training datasets. As a result, GNNs were 40% more

accurate on average than competing architectures (MLP, RNN, BiRNN) when compared on hun-

dreds of curated and inferred transcription modules. Our results argue that GNNs can become the

architecture of choice when building predictors of gene expression from exponentially growing

corpus of genome-wide transcriptomics data.

Availability and implementation: https://github.com/IBPA/GNN

Contact: iliast@ucdavis.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Prediction of cellular state in novel environments presents a need

and an opportunity in systems biology (Carrera et al., 2014; Kim

et al., 2016; O’Brien et al., 2015). Surge in the availability of data,

advances in computational techniques and exponential increase of

computing power have led to the adoption of omics analysis and

predictive modeling in a variety of fields, including food safety, drug

discovery, biofuel development and precision medicine (Abhyankar

et al., 2017; Aucoin et al., 2016; Gonzalez de Castro et al., 2013;

Wishart, 2016). The key role of gene expression (GE) in cellular ma-

chinery (Carrera et al., 2014) and the cost-effective nature of high-

throughput transcriptomics have renewed interest in predictors of

gene expression as a proxy of the cellular state (Ay and Arnosti,

2011; Tachibana, 2015). If successful, an accurate predictive GE

model can be useful in basic research on understanding how gene ex-

pression changes based on environmental stimuli, and in industrial

biotechnology by guiding wetlab experimentation to those settings

that are more likely to produce the desired results, from recombin-

ant protein expression (Dragosits et al., 2012; Mahalik et al., 2014)

to strain engineering (Riglar and Silver, 2018) and drug production

(Milne et al., 2009).

When it comes to prediction, artificial neural networks (ANN)

outperform other methods in areas such as computer vision and ma-

chine translation (LeCun et al., 2015). Despite their success in

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Bioinformatics, 2019, 1–9

doi: 10.1093/bioinformatics/bty945

Advance Access Publication Date: 19 November 2018

Original Paper

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

d
v
a

n
c
e

-a
rtic

le
-a

b
s
tra

c
t/d

o
i/1

0
.1

0
9

3
/b

io
in

fo
rm

a
tic

s
/b

ty
9

4
5

/5
1

9
1

7
0

3
 b

y
 U

n
iv

e
rs

ity
 O

f C
a

lifo
rn

ia
 u

s
e

r o
n

 0
8

 A
p

ril 2
0

1
9

complex prediction tasks (LeCun et al., 2015; Miotto et al., 2018), their

application for steady state GE prediction has been quite limited (Ching

et al., 2018). Instead most researchers rely on methods based on linear

models, molecular thermodynamics, differential equations, logical cir-

cuits and Bayesian networks (Ay and Arnosti, 2011; Kim et al., 2009).

The idea of using ANNs for GE prediction is not novel (Vohradsk,

2001) but its adoption has remained stale due to lack of data and lim-

ited predictive power of the algorithms so far. Recently, ground-

breaking ideas around deep neural networks (DNN) accompanied with

the availability of vast transcriptomics repositories have created an un-

precedented opportunity to create accurate predictors for genome-wide

expression (Ma et al., 2018). For example, a recurrent neural network

(RNN) was employed as part of a genome-scale model trained on

twenty million data points for steady state GE prediction in novel con-

ditions for bacterium Escherichia coli (Kim et al., 2016). In another

study, A 3-layer feedforward neural network (FNN) was used for GE

prediction when the expression of landmark genes were given (Chen

et al., 2016). More recently, a convolutional neural network (CNN)

called DeepChrome was used to predict GE from histone modifications

(Singh et al., 2016) and a similar tool, DeepPep was developed for pre-

dicting protein occurrence in proteomics samples (Kim et al., 2017).

There are several technical challenges to overcome when building

an ANN GE model. First, one has to optimize the ANN hyper-

parameters that determine the underlying ANN architecture.

Although general architectures can be trained, architectures that are

tailored to incorporate the key properties of a given problem tend to

be substantially more accurate. For example CNNs are designed to

excel in image tasks (Krizhevsky et al., 2012) based on the idea that

high level features in an image can be identified by hierarchical com-

bination of local features (e.g. for a face to be identified, two eyes,

nose and mouth would be identified nearby each other). Recently, a

new type of ANN called visual interaction network is developed to

capture dynamics of physical objects (e.g. billiard balls) from video

frames in order to predict object’s physical trajectory (Watters et al.,

2017). Schema networks take this idea further by capturing causal-

ities between object dynamics as well to enhance prediction in trans-

fer learning (Kansky et al., 2017). Currently, there is no ANN

architecture that maps well to the gene regulatory dynamics and the

complex expression signatures they produce within cells. To address

this challenge, we developed a novel feed-forward architecture,

coined Genetic Neural Network(GNN), that is founded on the obser-

vation that gene expression in prokaryotic systems is influenced, at

least partially, by the expression level of its transcription factors (TF)

(Bonneau et al., 2006; Fang et al., 2017). The fundamental building

block of the GNN is the GNN layer or cell, a type of node that has

been designed to capture the dynamics that govern gene regulation.

A second challenge in training ANNs is to produce sufficient

data to avoid over-fitting. DNNs are notorious for their need of

large datasets: for instance, ImageNet that is used to train computer

vision DNNs contains 14 million images (Deng et al., 2009). In con-

trast, for the most widely studied bacterium, E.coli, there are only

4389 GE profiles, each with the expression of its approximately

4500 genes, across 649 conditions (Kim et al., 2016). One of the

common approaches for mitigating the data gap in ML is con-

strained optimization. In the GNN architecture that we introduce

here, we achieve that by constraining the connectivity of the GNN

layers based on the transcriptional regulatory network of the organ-

ism, which is (partially) known from public databases. These two

features, namely the introduction of a new node type and an archi-

tecture that have been designed to mimic gene regulatory and ex-

pression dynamics, are the key innovations behind the superior

performance of GNNs and the main contributions of this paper.

In this article, we focus on steady state GE prediction for small to

medium size transcriptional network modules (between 2 and 1000

genes) and with the assumption that the expression of master regula-

tor (MR) genes are known. Since MR genes sit on top of the regula-

tory hierarchy, they play a key role in transcriptional regulation.

Given the causal role of MR genes on the GE profile, models that ac-

curately predict the impact of their perturbation are important. In

Section 2, we describe how we define, construct and train the GNN

model. In Section 3, we introduce competing methods that we com-

pare against and in Section 4 we describe the results of these perform-

ance review. The overall methodology is summarized in Figure 1.

2 Materials and methods

2.1 GNN architecture

The input layer of a GNN consists of the expression level of MR

genes and gene knockout information (referred to as ‘a’ and ‘KO’ in

Fig. 2). The output layer of GNN consists of the predicted gene ex-

pression levels. Each intermediate layer in GNN predicts expression

of a single gene, for instance, L1, L2 and L3 predict the expression of

gene a, b and c, respectively (Fig. 2). This architecture is built under

the assumption that expression of a gene with d regulators, can be

estimated using the activation function fhðxÞ where x 2 R
d
�0 repre-

sents the expression level of regulator genes. Therefore inputs of the

activation function fh for each gene, are made available by ensuring a

topological order. For example, in Figure 2A, the expression of gene c

is regulated by gene b. Therefore designated layer of b (i.e. the L1 cell)

comes before designated layer of c (i.e. the L2 cell) as in Figure 2B.

Note that topological order is not unique for cyclic graphs. Therefore,

when a cycle is detected (here by using depth-first-search), we remove

the feedback edges before generating the topological gene ordering.

The activation function fh is based on the generalized logistic

function that recapitulates the non-linear dynamics that govern gene

expression, usually modeled through the Hill function (Rosenfeld

et al., 2005). More specifically, fh is given by:

fhðxÞ ¼
t0 þ

Pd
k¼1 tke

pkxk

1þ
Pd

k¼1 bke
pkxk

(1)

where h is the set of function parameters including the input weight

vector p 2 R
d, numerator weight vector t 2 R

d
�0, denominator

weight vector b 2 R
d
�0 and bias t0 2 R�0. Assuming h is known for

all layers, one forward pass results in predicted expression levels ŷ

for all genes. The final predictions are clamped into a valid range

½ymin; ymax�. This will be ½0; 1� if data is normalized to this range.

Otherwise ymin and ymax are the minimum and maximum values

observed for each gene in the whole dataset. Layer-wise GNN train-

ing for h estimation is explained in the next section.

2.2 Layer-wise training

A separate regression problem is defined in each layer (i.e. for each

gene). For the layer corresponding to a particular gene, a corre-

sponding dataset C ¼ fX; yg that consists of regulator gene expres-

sion levels X and expression levels of the current gene y is created:

X ¼

xð1Þ

xð2Þ

.

.

.

xðmÞ

2

6

6

6

4

3

7

7

7

5

; y ¼

yð1Þ

yð2Þ

.

.

.

yðmÞ

2

6

6

6

6

4

3

7

7

7

7

5

(2)

To predict ŷðiÞ ¼ fhðx
ðiÞÞ; 8i ¼ 1 . . .m, we devise a loss function:

2 A.Eetemadi and I.Tagkopoulos

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

d
v
a

n
c
e

-a
rtic

le
-a

b
s
tra

c
t/d

o
i/1

0
.1

0
9

3
/b

io
in

fo
rm

a
tic

s
/b

ty
9

4
5

/5
1

9
1

7
0

3
 b

y
 U

n
iv

e
rs

ity
 O

f C
a

lifo
rn

ia
 u

s
e

r o
n

 0
8

 A
p

ril 2
0

1
9

A B C

Fig. 2. Genetic Neural Network architecture schematic for a regulatory network example. The aim is to predict gene expression levels given the expression of

master regulator[s] (MR) and knockout information (KO) for other genes. (A) An example gene regulatory network, consisting of a single MR ‘a’ and three other

genes b, c and d in topological order. Each arrow indicates a direct regulatory relationship. (B) The Genetic Neural Network topology that would map the regula-

tory relationships of the example gene regulatory network. The input consists of the MR expression level a and the knockout vector KO. Each layer corresponds

to a single gene (i.e. L1; L2; L3 correspond to b, c, d, respectively). Prediction of non-MR gene expression is achieved by a forward-pass, from first layer (L1) to last

(L3). This order ensures that for each layer the expression levels of the regulator[s] are available for the layer’s forward pass. (C) A dissection of a layer (i.e. GNN

node). It consists of the MR gene expression levels x, the activation function f, knockout information (e.g. KOd) and finally the output vector by appending the pre-

dicted expression (e.g. d̂) to the initial inputs of current layer when needed by subsequent layer[s]. Although only L3 is illustrated in detail, the general form of

layers are the same while the inputs and weights vary depending on regulators and training data

RNNMLP BiRNN

Reference Methods

P
re

d
ic

te
d

 G
E

Observed GE

Gene Expression (GE)

P
e

a
rs

o
n

 C
o

rr
e

la
ti
o

n

Dataset Size

Predicted vs. Observed
GE Correlation

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

Method

Overall
GE Prediction Error

Genetic Neural Network

Proposed Method

Master Regulator
Expression

Knockout
Information

P
re

d
ic

te
d

 E
x
p

re
s
s
io

n

Stratified Datasets

G
e

n
e

 K
n

o
c
k
o

u
t

M
a

tr
ix

Master Regulators

{G
e
n

e
 E

x
p

re
s
s
io

n
S

y
n

th
e

ti
c
 a

n
d

 R
e

a
l

G
e

n
e

 R
e

g
u

la
to

ry
 N

e
tw

o
rk

s

(Step1)

Normalization

and Stratification

(Step2)

Model Construction

and Training

(Step3)

Model Evaluation

Chemotaxis

fliF

fliG

fliK

fliJ

fliH

fliI
fliE

flgN

csgD

flgM iHF
ompR

rcsAB

flgG

fliN

flgF

fliM

flgI

flgK

flgE

fliD

fliO

rbsR

malT

cpxR

mglB

motB

tsr cheW
cheA

motA

flgH

fliP

flgD

flhA

fliQ

fliT

fliA

fliZ

nsrR
rbsB

sutR

matA

fliC

flhD

flhC

hdfR

flhB

flgC

flgB

fliR

fliS

flgL

flhDC
trg

aer

malE

cRP

lrhA

h-NS
yjjQ

Fig. 1. The proposed Genetic Neural Network (GNN) architecture, is evaluated against various ANN architectures and ANN types (MLPs, RNNs, BiRNNs) in its

ability to predict gene expression levels given master regulator expression and knockout information. In Step 1, a compendium of normalized expression levels

over a wide spectrum of conditions is created, together with the contextual gene regulatory network information [Chemotaxis pathway here, retrieved from

Gama-Castro et al. (2016)]. Stratified datasets of various sizes are generated after normalization to drive Step 2, where ANN models are constructed and trained.

When applicable, the model architecture is informed by known regulatory relationships. In Step 3, the methods are evaluated through 5-fold cross validation on

their predictive performance on gene expression

Genetic Neural Networks 3

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

d
v
a

n
c
e

-a
rtic

le
-a

b
s
tra

c
t/d

o
i/1

0
.1

0
9

3
/b

io
in

fo
rm

a
tic

s
/b

ty
9

4
5

/5
1

9
1

7
0

3
 b

y
 U

n
iv

e
rs

ity
 O

f C
a

lifo
rn

ia
 u

s
e

r o
n

 0
8

 A
p

ril 2
0

1
9

lossðC; hÞ ¼
X

m

i¼1

½f
h
ðxðiÞÞ ÿ yðiÞ�2 (3)

Hence optimal h can be determined by minimizing lossðC; hÞ:

h
� ¼ obj1ðCÞ ¼ ArgMin

h

lossðC; hÞ (4)

In order to solve (4) first we show that for a given parameter vector

p, the parameters w� ¼ ½t�0jt
�jb�� can be uniquely determined using a

linear program. To see this, let us assume w� is determined. Hence

we have:

h
þ ¼ ft�0; t

�;b�; pg (5)

where hþ, is the set of parameters for f where t�0; t
�; b� minimize the

loss for a given p. Therefore predicted expression of each gene ŷðiÞ

can be calculated given the corresponding TF expressions xðiÞ for

i ¼ 1 . . .m:

fhþ ðx
ðiÞÞ ¼

t�0 þ
P

d

k¼1

t�kh
ðiÞ
k

1þ
P

d

k¼1

b�kh
ðiÞ
k

¼ ŷðiÞ; h
ðiÞ
k ¼ epkx

ðiÞ

k (6)

Assuming b�f 0, the denominator above will be non-zero hence we

can rewrite as:

t�0 þ
X

d

k¼1

t�kh
ðiÞ
k ÿ ŷðiÞ

X

d

k¼1

b�kh
ðiÞ
k ¼ ŷðiÞ (7)

Considering ŷðiÞ � yðiÞ, we have:

t�0 þ
X

d

k¼1

t�kh
ðiÞ
k ÿ yðiÞ

X

d

k¼1

b�kh
ðiÞ
k � yðiÞ (8)

To convert this into matrix form, we define vector w� and matri-

cesH, Ye and A.

w� ¼ ½t�0; t
�
1; t
�
2; . . . ; t

�
d; b

�
1;b

�
2; . . . ;b

�
d�

T (9)

MatrixH consists of h
ðiÞ
k values (constant for given p and X):

H ¼

h
ð1Þ
1 h

ð1Þ
2 . . . h

ð1Þ
d

h
ð2Þ
1 h

ð2Þ
2 . . . h

ð2Þ
d

.

.

.
.
.
.

.
.

.
.
.
.

h
ðmÞ
1 h

ðmÞ
2 . . . h

ðmÞ
d

2

6

6

6

6

6

4

3

7

7

7

7

7

5

m�d

(10)

Matrix Ye consists of expression levels yðiÞ repeated d times in col-

umns (constant for given y):

Ye ¼

yð1Þ yð1Þ . . . yð1Þ

yð2Þ yð2Þ . . . yð2Þ

.

.

.
.
.
.

.
.

.
.
.
.

yðmÞ yðmÞ . . . yðmÞ

2

6

6

6

6

4

3

7

7

7

7

5

m�d

(11)

Matrix A is calculated using H and Ye where ‘�’ represents entry-

wise multiplication and ‘j’ represents column-wise matrix

concatenation:

A ¼ ½ 1jHjðÿYe �HÞ �m�ð2dþ1Þ (12)

Therefore Equation (8) can be represented in matrix form:

A:w� � y (13)

To see this, note that for each i: (I) the inner product of w with ith

row of A corresponds to the terms on the left side of Equation (8)

and (II) the ith element of y corresponds to the term on right side of

Equation (8).

To convert the approximation in (13) to equality, we add

£l ;£r 2 R
m
�0 to both sides:

A:w� þ £l ¼ yþ £r (14)

Therefore, the desirable w� should minimize approximation error
Xm

i¼1
£l
ðiÞ þ £r

ðiÞ. To find w�, we devised obj2:

w� ¼ obj2ðC;pÞ ¼ ArgMin
w

1T£l þ 1T£r

subject to A:w� þ £l ÿ £r ¼ y

£l f 0;£r f0; bf 0; tf 0

(15)

This can be transformed into standard linear programming (LP)

form:

w� ¼ ArgMin
z

aT :z

subject to G:z ¼ y

z � l

(16)

where

z¼

t0

t

b

£l

£r

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

; a ¼

0

0d�1

0d�1

1m�1

1m�1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

; l ¼

0

0d�1

0d�1

0m�1

0m�1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

;

G ¼ ½Am�ð2dþ1ÞjIm�mj ÿ Im�m �

(17)

Therefore, for a given input coefficient p and gene expression val-

ues C ¼ fX; yg, the optimal w� can be estimated by solving

obj2ðC; pÞ using the linear program in Equation (16). With this in-

sight, we can solve obj1ðCÞ (Equation (4)) using an iterative algorithm

starting from an initial p vector. In each iteration, first w� is estimated

using obj2ðC; pÞ. Then lossðC; ½w�jp�Þ and its gradient w.r.t p are cal-

culated. Finally a new p is generated using the calculated loss and its

gradient. Although various gradient based optimization methods can

be used for this iterative procedure, we used the conjugate gradient

method (Møller, 1993). This is described in Algorithm 1. Line 6 refers

to the first step. Line 7 and 8 refer to second step. The last step is

done by the ConjugateGradient function in each iteration.

In practice we run the algorithm 10 times with different initial ran-

dom values for p and use the one which gives the best fit (i.e. lowest

value for loss in Equation (3)). The complexity of layer-wise training

algorithm isOðm5:5Þ as derived in Supplementary Section S1.

Note that, there are two choices for matrix X values. First is to

use the actual GE values from the training dataset. Second is to

replace actual GE values with corresponding predicted ones when

calculated from a previous layer. In our experiments the second

choice provided slightly better predictive power (hence used for the

presented results of Section 4).

3 Competing methods

We compare the GNN method against LASSO, a linear model with

‘1 regularization (Tibshirani, 1996), a Multi-layered Perceptron

(MLP) (Hornik et al., 1989), a recurrent neural network (RNN)

(Pineda, 1987), a bi-directional neural network (BiRNN) (Schuster

and Paliwal, 1997) and a linear version of our GNN network

(LinGNN). Recall that in our prediction task, the input vector con-

sists of the expression level of the master regulator (MR) genes and

4 A.Eetemadi and I.Tagkopoulos

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

d
v
a

n
c
e

-a
rtic

le
-a

b
s
tra

c
t/d

o
i/1

0
.1

0
9

3
/b

io
in

fo
rm

a
tic

s
/b

ty
9

4
5

/5
1

9
1

7
0

3
 b

y
 U

n
iv

e
rs

ity
 O

f C
a

lifo
rn

ia
 u

s
e

r o
n

 0
8

 A
p

ril 2
0

1
9

the knockout information vector. Here, we use the vector v as the

concatenation of all inputs, the vector y as the expression level of

non-MR genes, and ŷ referring to their predicted values. The various

ANN architectures are illustrated in Supplementary Figure S2.

Unlike GNN, the common ANN architectures have hyper-

parameters that need to be first optimized. For our comparison, we

use the hyper-parameters that correspond to the best-performing

architecture (i.e. the architecture with minimum MAE) by using a

traditional search method (Bergstra and Bengio, 2012).

Multi-layer perceptron (MLP): MLP is used by Chen et al.

(2016) for GE prediction when expression of landmark genes are

known. An MLP instance here takes an input vector v and calculates

the output vector ŷ. To identify the hyper-parameters, we examine

architectures with 0–3 hidden layers, 5–50 hidden nodes per layer

with ‘2 regularization coefficient between 0.0 and 0.5.

Recurrent neural network (RNN): RNN is used by Kim et al.

(2017) for GE prediction when genetic and environmental perturba-

tions are characterized as input. Similar to an RNN used by Kim

et al. (2017), a fully connected RNN instance here, takes a sequence

of input vectors (Williams and Zipser, 1989). The same vector v is

repeated multiple times (depending on the depth hyper-parameter t)

as input. The output vector of RNN ŷ corresponds to the output of

the last rollout of the RNN (only). For hyper-parameters, we exam-

ine architectures with depth t between 1 and 20 and ‘2 regulariza-

tion coefficients between 0.0 and 0.5.

Bidirectional recurrent neural network (BiRNN): Our BiRNN

instances are set-up exactly same as our simple RNN ones except

that they are bidirectional.

LASSO: Linear regression with ‘1 regularization (i.e. LASSO) is

a widely used regression method that improves the generalization

power of the linear model by reducing the number of features

through an ‘1 penalty in the objective function (Tibshirani, 1996).

In our setting, it is equivalent to an MLP with no hidden

layers, identity activation function and ‘1 regularization. For hyper-

parameter optimization, we examined regularization coefficient

from 0.0 to 5.0.

For training competing ANN architectures and Lasso, we used

RMSProp (Tieleman and Hinton, 2012). The loss function used in

RMSProp here is the mean squared error (MSE) plus regularization

of model weights w as in Equation 18. We run RMSProp

with learning rate of 0.001 until convergence. The training is

stopped whenever MSE has less than 0.0001 improvement in the

last 100 epochs.

lossw ¼
1

m

X

m

i¼1

ðyi ÿ ŷ iÞ
2 þ k1jjwjj þ k2jjwjj

2
2 (18)

Linear GNN (LinGNN): Regulatory network connections can be

incorporated into a linear model for GE prediction, given TF expres-

sion level as it has demonstrated in previous models (Carrera et al.,

2009; Galagan et al., 2013). To evaluate the performance of a linear

model with the proposed architecture, we developed LinGNN,

which has the same GNN framework, but a linear function in

Equation (19) is used for node activation, instead of the nonlinear

activation in Equation (1). Here b 2 R is the bias term, a 2 R
d vec-

tor consists of additive coefficients and M 2 R
d�d consists of multi-

plicative coefficients.

fb;a;MðxÞ ¼ bþ
X

d

i¼1

ðaixi þ
X

d

j¼1

Mi;jxixjÞ (19)

For training the LinGNN, the same layer-wise training strategy is

used. However given the linear function, we used the OLS for par-

ameter fitting to solve Equation (4) (instead of Algorithm 1).

3.1 Evaluation metrics

To evaluate the model performance given observed GE values y

and corresponding predicted GE values ŷ, we use the Pearson

Correlation Coefficient (PCC) and Mean Absolute Error (MAE)

(Kvålseth, 1985).

4 Empirical results

We designed two sets of experiments to assess the impact of network

complexity and data availability (aforementioned challenges) on

predictive power.

4.1 Network complexity impact

First, we constructed the full TRN of E.coli curated by RegulonDB

v9.4 (Gama-Castro et al., 2016). Second, from this full TRN, we

extracted 33 network modules each containing between 10 and

1000 genes. This was done using the greedy module extraction

method in GeneNetWeaver software (Schaffter et al., 2011) also

used in number of DREAM challenges (Marbach et al., 2010,

2012). Third, for each extracted TRN module, we identified the MR

genes by selecting genes that are not regulated by any other gene

within that network. Fourth, for each TRN module, we performed

thousands of steady state thermodynamic simulation experiments

using GeneNetWeaver with added microarray noise. Each simula-

tion run requires kinetic parameters for each gene which are ran-

domly initialized by the simulation software (and unknown to GNN

and other predictive models). These in silico experiments consist of

Algorithm 1: Layer-wise training algorithm to estimate acti-

vation function parameter vector h ¼ ½wjp� where p and w

consist of input and exponential coefficients, respectively (see

Equation (1)). The gene expression dataset C related to a

gene, consists of X and y. The matrix X contains observed

TF expression levels (i.e. inputs to the activation function).

The vector y contains corresponding observed GE values for

this gene (i.e. activation function outputs).

Input: gene expression dataset C ¼ fX; yg

Output: activation function estimated parameter vector

h
� ¼ ½wjp�

1 w 0 (Note: w is a global variable)

2 p random initial vector

3 p ConjugateGradient (GetLossP, p;C)

4 return ½wjp�

5 Function GetLossP (p, C):

6 w obj2ðC; pÞ / / solve LP from equation (16)

7 loss p lossðC; ½wjp�Þ //equation (3)

8 loss p grad rlossðC;½wjp�Þ
rp

9 return loss p; loss p grad

10 Function ConjugateGradient (f, x, C):

/* f: cost function takes variables x and C

as input and returns the cost and the

gradient with respect to x. */

/* *** Conjugate Gradient Implementation

*** */

11 return x*

Genetic Neural Networks 5

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

d
v
a

n
c
e

-a
rtic

le
-a

b
s
tra

c
t/d

o
i/1

0
.1

0
9

3
/b

io
in

fo
rm

a
tic

s
/b

ty
9

4
5

/5
1

9
1

7
0

3
 b

y
 U

n
iv

e
rs

ity
 O

f C
a

lifo
rn

ia
 u

s
e

r o
n

 0
8

 A
p

ril 2
0

1
9

random multi-factorial perturbations for MR genes and single gene

knockouts for other genes giving rise to GE dataset with thousands

GE profiles. Fifth, for each GE dataset we identified 10 dissimilar

GE profiles. To identify these dissimilar GE profiles in a dataset, we

performed hierarchical clustering (Day and Edelsbrunner, 1984)

with cluster size of 10 and selected one GE profile from each cluster

randomly. Finally, we performed 5-fold cross-validation (CR) for

the task of GE prediction given MR expression levels and knockout

information in each dataset. Results in Figure 3A and C, show that

GNN method outperforms other methods on datasets with network

sizes ranging between 10 and 1000 when compared based on MAE

and PCC metrics in 5-fold CR setting. Our results show that the

GNN has a smaller error (average MAE 0.0960.01; PCC

0.866 0.03) than LinGNN (average MAE 0.116 0.01; PCC

0.806 0.05), Lasso (average MAE 0.1960.04; PCC 0.556 0.09),

MLP (average MAE 0.156 0.03; PCC 0.6360.10), RNN (average

MAE 0.156 0.03; PCC 0.636 0.08) and BiRNN (average MAE

0.156 0.03; PCC 0.656 0.08). Figure 3B depicts the overall per-

formance on all datasets. Schematic of the synthetic data generation

pipeline is presented in Supplementary Figure S1.

4.2 Effect of data availability

In order to assess predictive power of various architectures based on

data availability, we picked the transcription network of chemotaxis

since it is one of the most well-studied signaling pathways (Long

et al., 2017).

First, we constructed the TRN of chemotaxis. To do so, we used

KEGG (Kanehisa et al., 2017) to get list of 57 genes involved in

chemotaxis signal transduction pathway of bacterium E.coli. We

then added to this list, the genes directly involved in transcription of

chemotaxis genes. We then removed genes that are not involved in

any transcriptional regulation (i.e. genes that have no reported TF

listed) hence 61 genes with 84 TF-Gene relationships remained. For

TF-Gene relationships we used all regulatory relationships that are

based on experimental evidence curated in RegulonDB v9.4.

Second, we identify MR genes in the chemotaxis TRN as the list of

genes with no TF within the chemotaxis TRN. Third, we performed

thermodynamic simulations (with same method mentioned in 4.1)

100 times. Each time we used different set of network parameters

(TF binding affinities, degradation rates, etc.) for the chemotaxis

network using GeneNetWeaver. This gave us 100 different datasets

each with thousands of GE profiles and their corresponding knock-

out information. Fourth, from each GE dataset we extract 10 strati-

fied datasets with varying sizes (10–100 GE profiles each). To

generate a stratified dataset of size K, we perform hierarchical clus-

tering (Day and Edelsbrunner, 1984) with number of clusters set to

K and randomly pick one profile from each cluster. Finally, to evalu-

ate performance of GNN and competing methods we perform

5-fold CR validation for the task of GE prediction given expression

M
e
a
n
 A

b
s
o

lu
te

 E
rr

o
r

P
e
a
rs

o
n

 c
o
rr

e
la

ti
o

n
Dataset sizeDataset size

M
e
a
n
 A

b
s
o

lu
te

 E
rr

o
r

Predicted vs. Observed
GE Correlation

Overall
GE Prediction Error

Gene Expression (GE) Prediction Error FED

P
e
a
rs

o
n

 c
o
rr

e
la

ti
o

n

M
e
a
n
 A

b
s
o

lu
te

 E
rr

o
r

M
e
a
n
 A

b
s
o

lu
te

 E
rr

o
r

Predicted vs. Observed
GE Correlation

Overall
GE Prediction Error

Gene Expression (GE) Prediction ErrorA B C

Network sizeNetwork size

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

0.10

0.15

0.20

0.25

10 200 400 600 800 1000

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.4

0.6

0.8

1.0

10 200 400 600 800 1000

●

●

●

●

●

●

●

●

0.10

0.15

0.20

0.25

GNN MLP RNN BiRNNLinGNN Lasso

MLP RNNGNN BiRNNLinGNN Lasso

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.10

0.15

10 40 70 100

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.6

0.8

1.0

10 40 70 100

●

●

●

●

●

●

●

0.10

0.15

GNN MLP RNN BiRNNLinGNN Lasso

Method

Method

Fig. 3. 5-fold cross validation performance evaluation using data acquired through thermodynamic simulation. (A), (B) and C show performance of all methods

given randomly selected network modules for E.coli transcription network. Better performance of GNN can be seen in all cases. The BiRNN architecture outper-

forms other conventional ANN architectures in some cases. (D), (E) and (F) show the prediction performance for TRN module of chemotaxis (61 genes) in E.coli.

Results suggest that GNN performs in call cases particularly on smaller datasets

6 A.Eetemadi and I.Tagkopoulos

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

d
v
a

n
c
e

-a
rtic

le
-a

b
s
tra

c
t/d

o
i/1

0
.1

0
9

3
/b

io
in

fo
rm

a
tic

s
/b

ty
9

4
5

/5
1

9
1

7
0

3
 b

y
 U

n
iv

e
rs

ity
 O

f C
a

lifo
rn

ia
 u

s
e

r o
n

 0
8

 A
p

ril 2
0

1
9

level of MR genes and knockout information. Results in Figure 3D

and F, show that GNN method outperforms other methods on

stratified datasets with sizes ranging between 10 and 100 profiles

each when compared based on MAE and PCC metrics in 5-fold CR

setting. Figure 3E shows the overall performance on all datasets.

Note that the gap between GNN and other methods is larger on

smaller dataset sizes. Supplementary Figures S3 and S4 show pre-

dictive performances in higher resolution for a randomly selected

chemotaxis dataset related to 10 distinct experiments.

4.3 In vivo experiments

For in vivo evaluation, we used Affymetrix gene expression dataset

of bacterium E.coli [compiled and made available by Marbach et al.

(2012) also known as DREAM5 challenge data]. The dataset had

been normalized already using Robust Multichip Averaging (RMA)

(Bolstad et al., 2003). The compendium’s GE data corresponds to

genetic and environmental perturbation experiments on various

strains. We only used profiles from the wild type strain (MG1655)

for our evaluations. There are 427 wild type GE profiles. For repli-

cates, we use the mean GE value resulting in 227 GE profiles corre-

sponding to unique experimental settings.

4.3.1 Transcription network

To identify transcription network, we used GENIE3 (Irrthum et al.,

2010) which performed best for transcription network inference in

DREAM5 challenge (Marbach et al., 2012). The network inference

method GENIE3 takes GE data as input and produces a list of

TF-Gene relationships ordered based on confidence level we call

edge candidates.

4.3.2 Master regulators

The set of transcription factors on top of the regulatory hierarchy

are referred to as master regulators (Chan and Kyba, 2013). To de-

fine this more concretely, we use directional graph G ¼ fV;Eg to

represent a TRN where gene x is represented by vertex vx 2 V. An

edge ðvy; vxÞ 2 E represents transcriptional regulation of gene x by

the product of gene y. The estimated confidence for edges are stored

in matrix W where Wx;y 2 R�0 represents the reported confidence

from network inference for edge ðvy; vxÞ 2 E. Note that Wx;y ¼ 0 if

there is no edge between vertices vx, vy. Here an MR gene is consid-

ered to be a TF gene that is not regulated by any other TF.

Additionally in cases where genes inside a regulatory cycle are non-

reachable using any MR gene, the gene inside the cycle with max-

imum impact will be selected as MR among them. The impact(x) for

given gene x is calculated as in Equation (20) where dx is the number

of genes regulated by the product of gene x:

impactðxÞ ¼
1

dx

X

j2V

Wx;j (20)

4.3.3 In vivo evaluation pipeline and results

Sub-sampling and network inference: We generate 10 datasets using

stratified sampling (each containing 11 GE profiles). For each of the

10 datasets, we perform network inference using the remaining sam-

ples by GENIE3. This provides 10 networks, each with a dataset

that was not used to infer the network. From each network, we ex-

tract 11 TRN modules with number of genes ranging from 10 to

1000 generating 110 TRN modules in total. To extract a module

with N number of genes, we start with an empty network

G ¼ fV;Eg. First, we add edges to this network starting from high-

est confidence (from edge candidates list produced by GENIE3),

until jVj ¼ N. Second we add 20% more edges from

edge candidates. Finally we run the greedy module extraction

method using GeneNetWeaver (Schaffter et al., 2011) with the

desired network sizeN to extract a TRN network module.

Dataset construction: For each network module, MR genes are

identified using method explained in Section 4.3.2. Module’s corre-

sponding dataset (which consist of GE profiles not used in inferring

the parent network) is then partitioned into input (GE of MR genes)

and output (GE of non-MR genes). Stratified sampling and 5-fold

cross validation is performed same as explained in Section 4.1.

The role of TRN information: We performed a separate experi-

ment to evaluate the role of TRN information on predictive per-

formance of methods. In this experiment, we randomly shuffle the

gene names in the GE output data after the network inference step

(this is same shuffling the node names in the network while preserv-

ing MR gene names). We then perform same 5-fold cross validation

as explained before. This simulates a situation where the network in-

formation used by the model is random. Corresponding results are

reported as GNN-rnd and LinGNN-rnd in Figure 4 using dashed

lines.

Figure 4 summarizes the results indicating better overall predic-

tion performance for GNN (average MAE 0.586 0.02; PCC

0.816 0.04) compared to LinGNN (average MAE 0.606 0.01;

PCC 0.796 0.02), Lasso (average MAE 0.816 0.04; PCC

0.706 0.02), MLP (average MAE 0.7860.06; PCC 0.756 0.06),

RNN (average MAE 0.936 0.12; PCC 0.686 0.07) and BiRNN

(average MAE 0.816 0.03; PCC 0.746 0.04). Note that in vivo GE

values range from 3 to 15 while in silico GE values are normalized

between 0 and one.

4.4 Runtime comparison

For runtime comparison of methods, we used a dataset with size 10

for a network of 1000 genes and evaluated the training time. As in

Table 1, GNN is lacking in terms of runtime compared to other

methods. LinGNN performs best due to fast OLS operations on

small datasets. Other methods require hyper-parameter optimiza-

tion adding to their runtime (e.g. BiRNN is slower than when 50

hyper-parameter combinations are used). Note that the training pro-

cedure (described in Section 2.2) is inherently parallel. Therefore a

parallel implementation can make the training approximately n

times faster where n is the number of cores used.

5 Conclusion

We presented GNN, an artificial neural network that incorporates

gene regulatory network into it’s architecture to predict GE in novel

conditions given minimal training data. A trained GNN takes the

expression level of MR genes and information about knockout

experiments and predicts the expression of the rest of genes in the

given transcription network. We compared GNN with three com-

mon neural network architectures, linear regression with ‘1 regular-

ization and a network based linear model. Our comparison

benchmarks include in vivo micro array data and thermodynamic

simulation data for real biological network (e.g. chemotaxis). In our

evaluations GNN showed considerably higher prediction perform-

ance when tested on hundreds of real TRNs extracted from E.coli’s

full TRN. This was in spite of the fact that GNN did not enjoy

the hyper-parameter optimization used for competing methods.

The prediction performance gap was particularly higher on smaller

datasets. Although this is not the first time ANNs were employed

for GE prediction, this is a novel architecture with a custom

Genetic Neural Networks 7

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

d
v
a

n
c
e

-a
rtic

le
-a

b
s
tra

c
t/d

o
i/1

0
.1

0
9

3
/b

io
in

fo
rm

a
tic

s
/b

ty
9

4
5

/5
1

9
1

7
0

3
 b

y
 U

n
iv

e
rs

ity
 O

f C
a

lifo
rn

ia
 u

s
e

r o
n

 0
8

 A
p

ril 2
0

1
9

designed node that is tailored for gene expression prediction.

Concomitantly, to best of our knowledge, this is the first time that

TRN, expression of MR genes and gene knockout information are

used together for this task.

One limitation of the GNN architecture that we described in this

paper is that our implementation cannot take into account feedback

loops, as it is based on a feed-forward network. Given the preva-

lence of cycles in biological networks (Brandman and Meyer, 2008),

such limitation is expected to negatively impact predictive power.

A natural extension would be to apply the GNN cell to recurrent

neural networks (RNNs), which have the capacity to connect

through time multiple instances of acyclic network maps, by feeding

to the hidden layer of the next time slice, the hidden layer output of

the previous time slice. Although individual GNN models are acyc-

lic, together they have potential to model dynamics that arise in bio-

logical cycles. It would be also good to test the performance of this

method in larger networks with tens of thousands of nodes. For that

to happen with the non-linear GNNs, we need to take advantage of

parallelism for the training algorithm, as training time is a consider-

ation (Table 1). It would also help if the activation function is modi-

fied to one that can formulate a convex problem and its

optimization in layer-wise training. Given that the linear GNN is

performing quite well, despite its simplicity and more than an order

of magnitude faster performance, a system that runs the LinGNN

for very large networks (>5000 nodes) and non-linear GNN other-

wise, would score high in prediction, runtime performance and

scalability.

Extensions to this work include the integration of contextual in-

formation, such as gene sequence, experimental settings and meta-

bolic pathways. More thorough validation in large compendia (e.g.

see Kim et al., 2016) and multiple pathways may further pinpoint

the limitations of this approach. Although our focus here is bacterial

regulation, this work can be extended to organisms of higher

complexity, albeit with modifications that would rectify the large

discrepancy in the number of genes [from 182 in bacterium

Carsonella ruddii (Nakabachi et al., 2006) to more than 20 000 in

humans] and more complex modes of regulation.

Acknowledgement

This work used the Bridges cluster from Extreme Science and Engineering

Discovery Environment (XSEDE) through allocation TG-BCS180001.

Funding

This work was supported by grants from National Science Foundation

(1516695, 1743101 and 1254205) awarded to IT.

Conflict of Interest: none declared.

References

Abhyankar,W. et al. (2017) ‘omics’ for microbial food stability: proteomics

for the development of predictive models for bacterial spore stress survival

and outgrowth. Int. J. Food Microbiol., 240, 11–18.

Aucoin,H.R. et al. (2016) Omics in chlamydomonas for biofuel production.

In: Yuki,N. and Yonghua,L.-B. (eds) Lipids in Plant and Algae

Development. Springer International Publishing, Switzerland pp. 447–469.

Ay,A. and Arnosti,D.N. (2011) Mathematical modeling of gene expression: a

guide for the perplexed biologist. Crit. Rev. Biochem. Mol. Biol., 46,

137–151.

Bergstra,J. and Bengio,Y. (2012) Random search for hyper-parameter opti-

mization. J. Mach. Learn. Res., 13, 281–305.

Bolstad,B.M. et al. (2003) A comparison of normalization methods for high

density oligonucleotide array data based on variance and bias.

Bioinformatics, 19, 185–193.

Bonneau,R. et al. (2006) The inferelator: an algorithm for learning parsimoni-

ous regulatory networks from systems-biology data sets de novo. Genome

Biol., 7, R36.

Brandman,O. and Meyer,T. (2008) Feedback loops shape cellular signals in

space and time. Science, 322, 390–395.

Carrera,J. et al. (2009) Model-based redesign of global transcription regula-

tion.Nucleic Acids Res., 37, e38–e38.

Carrera,J. et al. (2014) An integrative, multi-scale, genome-wide model reveals

the phenotypic landscape of Escherichia coli.Mol. Syst. Biol., 10, 735.

GNN

Network sizeNetwork size

P
e
a
rs

o
n

 c
o
rr

e
la

ti
o

n

M
e
a
n
 A

b
s
o

lu
te

 E
rr

o
r

M
e
a
n
 A

b
s
o

lu
te

 E
rr

o
r

Predicted vs. Observed
GE Correlation

Overall
GE Prediction Error

Gene Expression (GE) Prediction ErrorA B C

GNN MLP RNN BiRNNLinGNN Lasso

LinGNN MLP RNN BiRNNLasso

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.6

0.7

0.8

0.9

10 200 400 600 800 1000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5

0.6

0.7

0.8

10 200 400 600 800 1000

●

●

0.6

0.7

0.8

0.9

GNN-rnd LinGNN-rnd

Method

Fig. 4. Fivefold cross validation performance evaluation using in vivo microarray data. (A), (B) and (C) show performance of all methods on 110 randomly selected

network modules on inferred transcription network of E.coli. GNN shows better overall performance. GNN-rnd and LinGNN-rnd show the performance of TRN

based methods when inferred TRN is randomized

Table 1. Training time for dataset with 1000 genes and 10 GE

profiles

Architecture GNN LinGNN Lasso MLP RNN BiRNN

Runtime (min: sec) 24: 26 0: 01 0: 12 0: 15 0: 27 1: 16

8 A.Eetemadi and I.Tagkopoulos

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

d
v
a

n
c
e

-a
rtic

le
-a

b
s
tra

c
t/d

o
i/1

0
.1

0
9

3
/b

io
in

fo
rm

a
tic

s
/b

ty
9

4
5

/5
1

9
1

7
0

3
 b

y
 U

n
iv

e
rs

ity
 O

f C
a

lifo
rn

ia
 u

s
e

r o
n

 0
8

 A
p

ril 2
0

1
9

Chan,S.S.-K. and Kyba,M. (2013) What is a master regulator? J. Stem Cell

Res. Ther., 3, 1–2.

Chen,Y. et al. (2016) Gene expression inference with deep learning.

Bioinformatics, 32, 1832–1839.

Ching,T. et al. (2018) Opportunities and obstacles for deep learning in biology

and medicine. J. Royal Soc. Interface, 15, 20170387.

Day,W.H. and Edelsbrunner,H. (1984) Efficient algorithms for agglomerative

hierarchical clustering methods. J. Class., 1, 7–24.

Deng,J. et al. (2009) Imagenet: A large-scale hierarchical image database. In

IEEE Conference on Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE, Miami, FL, pp. 248–255.

Dragosits,M. et al. (2012) A synthetic biology approach to self-regulatory re-

combinant protein production in Escherichia coli. J. Biol. Eng., 6, 2.

Fang,X. et al. (2017) Global transcriptional regulatory network for

Escherichia coli robustly connects gene expression to transcription factor

activities. Proc. Natl. Acad. Sci. USA, 114, 10286–10291.

Galagan,J.E. et al. (2013) The mycobacterium tuberculosis regulatory net-

work and hypoxia.Nature, 499, 178.

Gama-Castro,S. et al. (2016) Regulondb version 9.0: high-level integration of

gene regulation, coexpression, motif clustering and beyond. Nucleic Acids

Res., 44, D133–D143.

Gonzalez de Castro,D. et al. (2013) Personalized cancer medicine: molecular

diagnostics, predictive biomarkers, and drug resistance. Clin. Pharmacol.

Therap., 93, 252–259.

Hornik,K. et al. (1989) Multilayer feedforward networks are universal

approximators.Neural Netw., 2, 359–366.

Irrthum,A. et al. (2010) Inferring regulatory networks from expression data

using tree-based methods. PLoS One, 5, e12776.

Kanehisa,M. et al. (2017) Kegg: new perspectives on genomes, pathways, dis-

eases and drugs.Nucleic Acids Res., 45, D353–D361.

Kansky,K. et al. (2017) Schema networks: Zero-shot transfer with a generative

causal model of intuitive physics. arXiv preprint arXiv: 1706.04317.

Kim,H.D. et al. (2009) Transcriptional regulatory circuits: predicting numbers

from alphabets. Science, 325, 429–432.

Kim,M. et al. (2016) Multi-omics integration accurately predicts cellular state

in unexplored conditions for Escherichia coli.Nat. Commun., 7, 13090.

Kim,M. et al. (2017) Deeppep: deep proteome inference from peptide profiles.

PLoS Comput. Biol., 13, e1005661.

Krizhevsky,A. et al. (2012) Imagenet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems,

Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada,

USA, pp. 1097–1105.

Kvålseth,T.O. (1985) Cautionary note about r 2. Am. Stat., 39, 279–285.

LeCun,Y. et al. (2015) Deep learning.Nature, 521, 436.

Long,Z. et al. (2017) Cell-cell communication enhances bacterial chemotaxis

toward external attractants. Sci. Rep., 7, 12855.

Ma,J. et al. (2018) Using deep learning to model the hierarchical structure and

function of a cell.Nat. Methods, 15, 290.

Mahalik,S. et al. (2014) Genome engineering for improved recombinant pro-

tein expression in Escherichia coli.Microb. Cell Factories, 13, 177.

Marbach,D. et al. (2010) Revealing strengths and weaknesses of methods for

gene network inference. Proc. Natl. Acad. Sci. USA, 107, 6286–6291.

Marbach,D. et al. (2012) Wisdom of crowds for robust gene network infer-

ence.Nat. Methods, 9, 796.

Milne,C.B. et al. (2009) Accomplishments in genome-scale in silico

modeling for industrial and medical biotechnology. Biotechnol. J., 4,

1653–1670.

Miotto,R. et al. (2018) Deep learning for healthcare: review, opportunities

and challenges. Brief. Bioinf, 19, 1236–1246.

Møller,M.F. (1993) A scaled conjugate gradient algorithm for fast supervised

learning.Neural Netw., 6, 525–533.

Nakabachi,A. et al. (2006) The 160-kilobase genome of the bacterial endo-

symbiont carsonella. Science, 314, 267–267.

O’Brien,E.J. et al. (2015) Using genome-scale models to predict biological

capabilities. Cell, 161, 971–987.

Pineda,F.J. (1987) Generalization of back-propagation to recurrent neural net-

works. Phys. Rev. Lett., 59, 2229.

Riglar,D.T. and Silver,P.A. (2018) Engineering bacteria for diagnostic and

therapeutic applications.Nat. Rev. Microbiol., 16, 214.

Rosenfeld,N. et al. (2005) Gene regulation at the single-cell level. Science,

307, 1962–1965.

Schaffter,T. et al. (2011) Genenetweaver: in silico benchmark generation and per-

formance profiling of network inferencemethods.Bioinformatics, 27, 2263–2270.

Schuster,M. and Paliwal,K.K. (1997) Bidirectional recurrent neural networks.

IEEE Trans. Signal Process., 45, 2673–2681.

Singh,R. et al. (2016) Deepchrome: deep-learning for predicting gene expres-

sion from histone modifications. Bioinformatics, 32, i639–i648.

Tachibana,C. (2015) Transcriptomics today: microarrays, RNA-seq, and

more. Science, 349, 544–546.

Tibshirani,R. (1996) Regression shrinkage and selection via the lasso. J. R.

Stat. Soc. Ser. B (Methodological), 58, 267–288.

Tieleman,T. and Hinton,G. (2012) Lecture 6.5-rmsprop: divide the gradient

by a running average of its recent magnitude. COURSERA Neural Netw.

Mach. Learn., 4, 26–31.

Vohradsk,J. (2001) Neural network model of gene expression. FASEB J., 15,

846–854.

Watters,N. et al. (2017) Visual interaction networks. arXiv preprint arXiv:

1706.01433.

Williams,R.J. and Zipser,D. (1989) A learning algorithm for continually run-

ning fully recurrent neural networks.Neural Comput., 1, 270–280.

Wishart,D.S. (2016) Emerging applications of metabolomics in drug discovery

and precision medicine.Nat. Rev. Drug Discov., 15, 473.

Genetic Neural Networks 9

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
io

in
fo

rm
a

tic
s
/a

d
v
a

n
c
e

-a
rtic

le
-a

b
s
tra

c
t/d

o
i/1

0
.1

0
9

3
/b

io
in

fo
rm

a
tic

s
/b

ty
9

4
5

/5
1

9
1

7
0

3
 b

y
 U

n
iv

e
rs

ity
 O

f C
a

lifo
rn

ia
 u

s
e

r o
n

 0
8

 A
p

ril 2
0

1
9

